Michael Becker and Martin Jansen*

Institut für Anorganische Chemie der Universität Bonn, Gerhard-Domagk-Str. 1, Bonn D-53121, Germany

Single phase $Na_5H(CN_2)_3$ was obtained by thermal decomposition of Na(HNCN) and structurally characterized by Rietveld refinement of X-ray powder diffraction data; $Na_5H(CN_2)_3$ was found to be isostructural to $K_5H(CN_2)_3$, and identical to a phase that was previously reported as $Na_4H_2(CN)_3$.

Up to now two sodium salts of cyanamide, Na(HNCN) and Na₂(NCN), ¹ have been identified and structurally characterized. Both substances are highly sensitive to the atmosphere. Another sodium salt of cyanamide, 'Na₄H₂(CN₂)₃' was reported in 1989.² However, the powder diffractogram calculated for the proposed structure shows significant deviations from the experimental one, and a reinvestigation seemed worthwhile.

sodium with interatomic distances as one would expect. $Na_5H(CN_2)_3$ is isostructural to $K_5H(CN_2)_3$.³

Discussion

The structure of $Na_5H(CN_2)_3$ consists of two interpenetrating ReO_3 -analogous sublattices with the compositions $Na(CN_2)_3$ which are shifted with respect to each

Table 1 Crystallographic parameters for Na₅H(CN₂)₃, average deviation in brackets

$Na_5H(CN_2)_3$			
(a) Crystal data Symmetry Space group a/pm	cu <u>b</u> ic <i>Im</i> 3 <i>m</i> 724.49(9)		
(b) Atomic co-ordinates: x, y, z Na(1) Na(2) C N	0 0.25 0.5 0.339(1)	0 0.25 0	0 0.25 0
(c) Interatomic distances [pm] r[Na(1)-N] r[Na(2)-N] r[Na(1)-Na(2)] r[C ··· N]	266.6(2) 255.0(71) 313.71 107.2(71)		
(d) interatomic angles [°] N-C-N Na(1)-N-C N-Na(1)-N (12 times) N-Na(1)-N (3 times) N-Na(2)-N (6 times) N-Na(2)-N (6 times) N-Na(2)-N (3 times) N-Na(2)-N (3 times) Na(2)-N-C	180 180 90 180 94.87(217) 85.13(217) 180 106.09(147)		

Results

The title compound was synthesized using the procedure previously reported for 'Na₄H₂(CN₂)₃'.² A crystal structure determination by Rietveld's profile fitting method based on X-ray powder data revealed the true composition to be Na₅H(CN₂)₃. The crystal data and atomic parameters are given in Table 1. On comparing the experimental X-ray powder diffractograms it became quite clear that the previously published 'Na₄H₂(CN₂)₃' and Na₅H(CN₂)₃ are identical. Using the right composition and structural model, the significant discrepancies between the calculated and observed X-ray powder diffractograms disappear (*cf.* Fig. 1). Furthermore, empty octahedral voids, an unreasonable feature of the previous structural model, are now occupied by

Fig. 1 X-Ray powder pattern and difference plot after Rietveld refinement of $Na_5H(CN_2)_3$

¹⁾ Na₅H(CN₂)₃
2) calculated pattern
3) difference obs-calc

2500

10.0 20.0 30.0 40.0 50.0 60.0 70.0

^{*}To receive any correspondence.

[†]This is a **Short Paper** as defined in the Instructions for Authors, [J. Chem. research (S), 1997, Issue 1, p. vii]; there is therefore no corresponding material in J. Chem. Research (M).

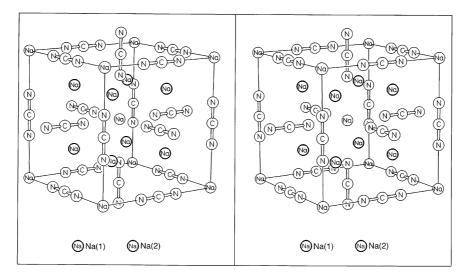


Fig. 2 Unit cell of Na₅H(CN₂)₃

other by the vector (0.5/0.5/0.5). Each resulting octahedral hole is occupied by sodium. Thus Na(1)⁺ is found in a regular, octahedral coordination sphere formed by CN₂² ligands $[r(Na(1)^+-N) = 266.6 \text{ pm}; Na(1)^+-N-C = 180^\circ]$ (Fig. 2).

Na(2) + shows a slight deviation from a regular octahedral coordination $[r(Na(2)^+-N) = 255.0 \text{ pm}; Na(2)^+-N-C =$ 106.09°]. Pertinent crystallographic data, including interatomic distances and angles, are collected in Table 1. The protons in Na₅H(CN₂)₃ are disordered. At the level of significance of the present structure determination, no deviations in the geometry of (N-C-N)2-, which might be caused by attached hydrogen atoms, are found.

Experimental

The monosodium salt of cyanamide was synthesized from a solution of the free acid in rigorously dried ethanol using sodium ethoxide as a base. Na₅H(CN₂)₃ was obtained as the residue remaining after thermal treatment of Na(HNCN) under vacuum (275 K; 0.1 Nm⁻²; 12 h).² The samples obtained were colourless, polycrystalline and, according to X-ray powder diffraction, free of alien phases. The experimental data were collected on a Stoe Stadi P diffractometer using a Germanium monochromator with CuK_{α} radiation ($\lambda = 1.54051 \text{ Å}$). The structure refinement was carried out by Rietveld methods^{4,5} out of 15 reflections with 2 θ in the range 10 to 80° . The residual value for the refinement converged to R(p) = 0.095 and R(i) = 0.082.

Received, 26th August 1997; Accepted, 9th October 1997 Paper 7/06196J

References

- 1 M. G. Down, M. J. Haley, P. Hubberstey, R. J. Pulham and A. E. Thunder, J. Chem. Soc., Chem. Commun, 1978, 52.
- 2 A. Harper and P. Hubberstey, J. Chem. Res., 1989, (S) 194; (M) 1452.
- 3 M. Becker, M. Jansen, A. Lieb, W. Milius and W. Schnick, Z. Anorg. Allg. Chem., in the press.
- 4 H. M. Rietveld, Acta Crystallogr., 1967, 22, 151.
- 5 H. M. Rietveld, Acta Crystallogr., 1969, 2, 65.